Best Practices
Best Practice Categories
Comprehensive guidelines for successful integration
Security Best Practices
Secure your API integration and protect sensitive data.
Performance Optimization
Optimize your integration for speed and efficiency.
Error Handling
Implement robust error handling for production reliability.
Code Quality
Write maintainable and scalable code for long-term success.
Essential Best Practices
Follow these guidelines for secure, efficient, and reliable integration
API Key Management
Store API keys securely and rotate them regularly
- Never expose API keys in client-side code
- Use environment variables for storage
- Implement key rotation policies
- Monitor key usage and access
Caching Strategy
Implement intelligent caching to reduce API calls
- Cache duty rates for 24 hours
- Use Redis or similar for distributed caching
- Implement cache invalidation strategies
- Monitor cache hit rates
Error Handling
Handle API errors gracefully with retry logic
- Implement exponential backoff for retries
- Log all API errors for debugging
- Provide user-friendly error messages
- Set up monitoring and alerting
Rate Limiting
Respect API rate limits and implement client-side throttling
- Track API usage and implement throttling
- Use queue systems for high-volume requests
- Implement circuit breakers for fault tolerance
- Monitor rate limit headers
Common Anti-patterns to Avoid
Learn from common mistakes and avoid these integration pitfalls
Hardcoding API Keys
Never hardcode API keys in your source code
Security risk
Use environment variables and secure key management
No Error Handling
Failing to handle API errors can crash your application
Poor user experience
Implement comprehensive error handling with fallbacks
Ignoring Rate Limits
Making too many requests can get your API access suspended
Service disruption
Implement proper rate limiting and request queuing
No Caching
Making redundant API calls wastes resources and slows performance
Poor performance
Implement intelligent caching for frequently requested data
Best Practice Example
Example of proper error handling and caching implementation
Robust Integration Example
Example with proper error handling, caching, and rate limiting
import { CarapisTax } from '@carapis/tax-sdk'; class CustomsCalculator { constructor(apiKey) { this.tax = new CarapisTax(apiKey); this.cache = new Map(); this.rateLimiter = new RateLimiter(100, 60000); // 100 requests per minute } async calculateDuty(params) { // Check cache first const cacheKey = this.generateCacheKey(params); if (this.cache.has(cacheKey)) { return this.cache.get(cacheKey); } // Check rate limit if (!this.rateLimiter.canMakeRequest()) { throw new Error('Rate limit exceeded'); } try { const result = await this.tax.calculate(params); // Cache the result for 24 hours this.cache.set(cacheKey, result); setTimeout(() => this.cache.delete(cacheKey), 24 * 60 * 60 * 1000); return result; } catch (error) { console.error('Calculation error:', error); throw new Error('Failed to calculate customs duty'); } } generateCacheKey(params) { return JSON.stringify(params); } }